Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.369
Filtrar
1.
Eur J Immunol ; : e2350610, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576227

RESUMO

Mycobacterium abscessus is an emerging pathogen that causes chronic pulmonary infection. Treatment is challenging owing in part to our incomplete understanding of M. abscessus virulence mechanisms that enable pathogen persistence, such as the differing pathogenicity of M. abscessus smooth (S) and rough (R) colony morphotype. While R M. abscessus is associated with chronic infection and worse patient outcomes, it is unknown how immune responses to S and R M. abscessus differ in an acute pulmonary infection setting. In this study, immunological outcomes of M. abscessus infection with S and R morphotypes were examined in an immune-competent C3HeB/FeJ murine model. R M. abscessus infection was associated with the rapid production of inflammatory chemokines and recruitment of activated, MHC-II+ Ly6C+ macrophages to lungs and mediastinal LN (mLN). While both S and R M. abscessus increased T helper 1 (Th1) phenotype T cells in the lung, this was markedly delayed in mice infected with S M. abscessus. However, histopathological involvement and bacterial clearance were similar regardless of colony morphotype. These results demonstrate the importance of M. abscessus colony morphotype in shaping the development of pulmonary immune responses to M. abscessus, which further informs our understanding of M. abscessus host-pathogen interactions.

2.
J Bacteriol ; : e0010924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597609

RESUMO

Pseudomonas aeruginosa is a significant cause of global morbidity and mortality. Although it is often regarded as an extracellular pathogen toward human cells, numerous investigations report its ability to survive and replicate within host cells, and additional studies demonstrate specific mechanisms enabling it to adopt an intracellular lifestyle. This ability of P. aeruginosa remains less well-investigated than that of other intracellular bacteria, although it is currently gaining attention. If intracellular bacteria are not killed after entering host cells, they may instead receive protection from immune recognition and experience reduced exposure to antibiotic therapy, among additional potential advantages shared with other facultative intracellular pathogens. For this review, we compiled studies that observe intracellular P. aeruginosa across strains, cell types, and experimental systems in vitro, as well as contextualize these findings with the few studies that report similar observations in vivo. We also seek to address key findings that drove the perception that P. aeruginosa remains extracellular in order to reconcile what is currently understood about intracellular pathogenesis and highlight open questions regarding its contribution to disease.

3.
Infect Immun ; : e0048923, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38591884

RESUMO

Certain Escherichia coli (E. coli) strains are attaching and effacing (A/E) lesion pathogens that primarily infect intestinal epithelial cells. They cause actin restructuring and polymerization within the host cell to create an actin-rich protrusion below the site of adherence, termed the pedestal. Although there is clarity on the pathways initiating pedestal formation, the underlying purpose(s) of the pedestal remains ambiguous. The conservation of pedestal-forming activity across multiple pathogens and redundancy in formation pathways indicate a pathogenic advantage. However, few decisive conclusions have been drawn, given that the results vary between model systems. Some research argues that the pedestal increases the colonization capability of the bacterium. These studies utilize A/E pathogens specifically deficient in pedestal formation to evaluate adhesion and intestinal colonization following infection. There have been many proposed mechanisms for the colonization benefit conferred by the pedestal. One suggested benefit is that the pedestal allows for direct cytosolic anchoring through incorporation of the established host cortical actin, causing a stable link between the pathogen and cell structure. The pedestal may confer enhanced motility, as enteropathogenic E. coli (EPEC) and enterohemorrhagic E. coli (EHEC) are better able to migrate on the surface of host cells and infect neighboring cells in the presence of the pedestal. Additionally, some research suggests that the pedestal improves effector delivery. This review will investigate the purpose of pedestal formation using evidence from recent literature and will critically evaluate the methodology and model systems. Most importantly, we will contextualize the proposed functions to reconcile potential synergistic effects.

4.
Front Cell Infect Microbiol ; 14: 1264525, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38585651

RESUMO

Introduction: Dengue is an arboviral disease causing severe illness in over 500,000 people each year. Currently, there is no way to constrain dengue in the clinic. Host kinase regulators of dengue virus (DENV) infection have the potential to be disrupted by existing therapeutics to prevent infection and/or disease progression. Methods: To evaluate kinase regulation of DENV infection, we performed kinase regression (KiR), a machine learning approach that predicts kinase regulators of infection using existing drug-target information and a small drug screen. We infected hepatocytes with DENV in vitro in the presence of a panel of 38 kinase inhibitors then quantified the effect of each inhibitor on infection rate. We employed elastic net regularization on these data to obtain predictions of which of 291 kinases are regulating DENV infection. Results: Thirty-six kinases were predicted to have a functional role. Intriguingly, seven of the predicted kinases - EPH receptor A4 (EPHA4), EPH receptor B3 (EPHB3), EPH receptor B4 (EPHB4), erb-b2 receptor tyrosine kinase 2 (ERBB2), fibroblast growth factor receptor 2 (FGFR2), Insulin like growth factor 1 receptor (IGF1R), and ret proto-oncogene (RET) - belong to the receptor tyrosine kinase (RTK) family, which are already therapeutic targets in the clinic. We demonstrate that predicted RTKs are expressed at higher levels in DENV infected cells. Knockdown of EPHB4, ERBB2, FGFR2, or IGF1R reduces DENV infection in hepatocytes. Finally, we observe differential temporal induction of ERBB2 and IGF1R following DENV infection, highlighting their unique roles in regulating DENV. Discussion: Collectively, our findings underscore the significance of multiple RTKs in DENV infection and advocate further exploration of RTK-oriented interventions against dengue.


Assuntos
Vírus da Dengue , Dengue , Humanos , Vírus da Dengue/fisiologia , Receptor EphA1 , Hepatócitos/metabolismo , Tirosina , Replicação Viral
5.
Microbiol Res ; 284: 127728, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38643523

RESUMO

The continued rise of drug-resistant bacterial infections heightens a threat of a pandemic of antimicrobial resistance to the global health. The urgency of infection control against antimicrobial-resistant bacteria is evident. Ferroptosis, a newly defined form of iron-dependent cell death characterized by lipid peroxidation, has garnered substantial interest since this programmed cell death was associated with pathophysiological processes of many diseases. Exploring whether ferroptosis could be utilized in infectious diseases holds significant importance for discovering novel antimicrobial approaches. Recent years have witnessed significant progress with respect to elucidating the mechanisms that govern ferroptosis induction and its roles in bacterial pathogenesis and host-pathogen interactions. In this review, we discuss the mechanisms of targeting ferroptosis and/or iron homeostasis for the control of antimicrobial-resistant bacterial infections. These implications may inform and enable effective therapeutic strategies against pathogen infection and provide novel insights into the potential applications of ferroptosis to address the global bacterial resistance crisis.

6.
One Health ; 18: 100718, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38644969

RESUMO

After mosquitoes, ticks are among the most important vector of pathogens of concern for animal and public health, but unless mosquitoes ticks remain attached to their hosts for long time periods providing an opportunity to analyse their role in the dispersal and dynamics of different zoonotic pathogens. Given their interest in public health it is important to understand which factors affect their incidence in different hosts and to stablish effective surveillance programs to determine the risk of transmission and spill-over of zoonotic pathogens. Taking benefit of a large network of volunteer ornithologists, we analysed the life-history traits associated to the presence of ticks using information of 620,609 individuals of 231 avian species. Bird phylogeny, locality and year explained a large amount of variance in tick prevalence. Non-colonial species non breeding in grasslands and non-spending the non-breeding season as gregarious groups or isolated individuals (e.g. thrushes, quails and finches) had the higher prevalence of ticks and appear as good candidates for zoonosis surveillance programs based on the analyses of ticks collected from wild birds. Ringers underestimated tick prevalence but can be considered as an important source of information of ticks for public and animal health surveillance programs if properly trained for the detection and collection of the different tick development phases.

7.
Curr Protoc ; 4(4): e1021, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38619090

RESUMO

Intracellular bacterial pathogens implement a diverse array of strategies to target host cells and establish infection. For vacuolar pathogens, the process of pathogen-containing vacuole movement within host cells, termed intracellular trafficking, is central to both pathogen survival and infection progression. Typically a process mediated by secreted virulence factors that manipulate the host cytoskeletal machinery, internalized pathogen-containing vacuoles traffic to the site of replication to establish a unique replicative niche, and if applicable, traffic back toward the host cell periphery for cell-to-cell spread. As such, the intracellular positioning of pathogen-containing vacuoles represents a fundamental measure of infection progression. Here, we describe a fluorescence microscopy-based method to quantitatively assess bacterial intracellular positioning, using Salmonella enterica serovar Typhimurium infection of epithelial cells as a model. This experimental approach can be modified to study infection in diverse host cell types, and with a broad array of pathogens. The system can also be adapted to examine the kinetics of infection, identify secreted virulence factors that mediate host trafficking, investigate host factors that are targeted by the pathogen for trafficking, and assess functional domains within a virulence factor responsible for mediating the phenotype. Collectively, these tools can provide fundamental insight into the pathogenesis of a diverse array of intracellular bacterial pathogens, and new host factors that are hijacked to mediate infection. © 2024 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Culture and preparation of host cells Alternate Protocol: Culture and preparation of host cells to assess host factor contribution to bacterial positioning Basic Protocol 2: Infection of epithelial cells with S. Typhimurium Basic Protocol 3: Fluorescence staining for analysis of bacterial positioning Basic Protocol 4: Fluorescence microscopy analysis of bacterial positioning.


Assuntos
Citoesqueleto , Vacúolos , Transporte Biológico , Células Epiteliais , Fatores de Virulência
8.
Front Microbiol ; 15: 1359513, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38638903

RESUMO

Defenses against oxidative damage to cell components are essential for survival of bacterial pathogens during infection, and here we have uncovered that the DmsABC S-/N-oxide reductase is essential for virulence and in-host survival of the human-adapted pathogen, Haemophilus influenzae. In several different infection models, H. influenzae ΔdmsA strains showed reduced immunogenicity as well as lower levels of survival in contact with host cells. Expression of DmsABC was induced in the presence of hypochlorite and paraquat, closely linking this enzyme to defense against host-produced antimicrobials. In addition to methionine sulfoxide, DmsABC converted nicotinamide- and pyrimidine-N-oxide, precursors of NAD and pyrimidine for which H. influenzae is an auxotroph, at physiologically relevant concentrations, suggesting that these compounds could be natural substrates for DmsABC. Our data show that DmsABC forms part of a novel, periplasmic system for defense against host-induced S- and N-oxide stress that also comprises the functionally related MtsZ S-oxide reductase and the MsrAB peptide methionine sulfoxide reductase. All three enzymes are induced following exposure of the bacteria to hypochlorite. MsrAB is required for physical resistance to HOCl and protein repair. In contrast, DmsABC was required for intracellular colonization of host cells and, together with MtsZ, contributed to resistance to N-Chlorotaurine. Our work expands and redefines the physiological role of DmsABC and highlights the importance of different types of S-oxide reductases for bacterial virulence.

9.
mSystems ; : e0017924, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656122

RESUMO

The utilization of ATP within cells plays a fundamental role in cellular processes that are essential for the regulation of host-pathogen dynamics and the subsequent immune response. This study focuses on ATP-binding proteins to dissect the complex interplay between Staphylococcus aureus and human cells, particularly macrophages (THP-1) and keratinocytes (HaCaT), during an intracellular infection. A snapshot of the various protein activity and function is provided using a desthiobiotin-ATP probe, which targets ATP-interacting proteins. In S. aureus, we observe enrichment in pathways required for nutrient acquisition, biosynthesis and metabolism of amino acids, and energy metabolism when located inside human cells. Additionally, the direct profiling of the protein activity revealed specific adaptations of S. aureus to the keratinocytes and macrophages. Mapping the differentially activated proteins to biochemical pathways in the human cells with intracellular bacteria revealed cell-type-specific adaptations to bacterial challenges where THP-1 cells prioritized immune defenses, autophagic cell death, and inflammation. In contrast, HaCaT cells emphasized barrier integrity and immune activation. We also observe bacterial modulation of host processes and metabolic shifts. These findings offer valuable insights into the dynamics of S. aureus-host cell interactions, shedding light on modulating host immune responses to S. aureus, which could involve developing immunomodulatory therapies. IMPORTANCE: This study uses a chemoproteomic approach to target active ATP-interacting proteins and examines the dynamic proteomic interactions between Staphylococcus aureus and human cell lines THP-1 and HaCaT. It uncovers the distinct responses of macrophages and keratinocytes during bacterial infection. S. aureus demonstrated a tailored response to the intracellular environment of each cell type and adaptation during exposure to professional and non-professional phagocytes. It also highlights strategies employed by S. aureus to persist within host cells. This study offers significant insights into the human cell response to S. aureus infection, illuminating the complex proteomic shifts that underlie the defense mechanisms of macrophages and keratinocytes. Notably, the study underscores the nuanced interplay between the host's metabolic reprogramming and immune strategy, suggesting potential therapeutic targets for enhancing host defense and inhibiting bacterial survival. The findings enhance our understanding of host-pathogen interactions and can inform the development of targeted therapies against S. aureus infections.

10.
Microbiol Mol Biol Rev ; : e0020222, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587383

RESUMO

SUMMARYEvery human being is presumed to be infected by the fungus Pneumocystis jirovecii at least once in his or her lifetime. This fungus belongs to a large group of species that appear to exclusively infect mammals, with P. jirovecii being the only one known to cause disease in humans. The mystery of P. jirovecii origin and speciation is just beginning to unravel. Here, we provide a review of the major steps of P. jirovecii evolution. The Pneumocystis genus likely originated from soil or plant-associated organisms during the period of Cretaceous ~165 million years ago and successfully shifted to mammals. The transition coincided with a substantial loss of genes, many of which are related to the synthesis of nutrients that can be scavenged from hosts or cell wall components that could be targeted by the mammalian immune system. Following the transition, the Pneumocystis genus cospeciated with mammals. Each species specialized at infecting its own host. Host specialization is presumably built at least partially upon surface glycoproteins, whose protogene was acquired prior to the genus formation. P. jirovecii appeared at ~65 million years ago, overlapping with the emergence of the first primates. P. jirovecii and its sister species P. macacae, which infects macaques nowadays, may have had overlapping host ranges in the distant past. Clues from molecular clocks suggest that P. jirovecii did not cospeciate with humans. Molecular evidence suggests that Pneumocystis speciation involved chromosomal rearrangements and the mounting of genetic barriers that inhibit gene flow among species.

11.
Microbiol Spectr ; : e0425522, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38587411

RESUMO

tRNA modifications play important roles in maintaining translation accuracy in all domains of life. Disruptions in the tRNA modification machinery, especially of the anticodon stem loop, can be lethal for many bacteria and lead to a broad range of phenotypes in baker's yeast. Very little is known about the function of tRNA modifications in host-pathogen interactions, where rapidly changing environments and stresses require fast adaptations. We found that two closely related fungal pathogens of humans, the highly pathogenic Candida albicans and its much less pathogenic sister species, Candida dubliniensis, differ in the function of a tRNA-modifying enzyme. This enzyme, Hma1, exhibits species-specific effects on the ability of the two fungi to grow in the hypha morphology, which is central to their virulence potential. We show that Hma1 has tRNA-threonylcarbamoyladenosine dehydratase activity, and its deletion alters ribosome occupancy, especially at 37°C-the body temperature of the human host. A C. albicans HMA1 deletion mutant also shows defects in adhesion to and invasion into human epithelial cells and shows reduced virulence in a fungal infection model. This links tRNA modifications to host-induced filamentation and virulence of one of the most important fungal pathogens of humans.IMPORTANCEFungal infections are on the rise worldwide, and their global burden on human life and health is frequently underestimated. Among them, the human commensal and opportunistic pathogen, Candida albicans, is one of the major causative agents of severe infections. Its virulence is closely linked to its ability to change morphologies from yeasts to hyphae. Here, this ability is linked-to our knowledge for the first time-to modifications of tRNA and translational efficiency. One tRNA-modifying enzyme, Hma1, plays a specific role in C. albicans and its ability to invade the host. This adds a so-far unknown layer of regulation to the fungal virulence program and offers new potential therapeutic targets to fight fungal infections.

12.
Mol Cell Proteomics ; : 100753, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38527648

RESUMO

Bacterial or viral antigens can contain subdominant protein regions that elicit weak antibody responses upon vaccination or infection although there is accumulating evidence that antibody responses against subdominant regions can enhance the protective immune response. One proposed mechanism for subdominant protein regions is binding of host proteins that prevent antibody production against epitopes hidden within the protein binding interfaces. Here, we used affinity-purification combined with quantitative mass spectrometry (AP-MS) to examine the level of competition between antigen-specific antibodies and host-pathogen protein interaction networks using the M1 protein from Streptococcus pyogenes as a model system. As most humans have circulating antibodies against the M1 protein, we first used AP-MS to show that the M1 protein interspecies protein network formed with human plasma proteins is largely conserved in naïve mice. Immunizing mice with the M1 protein generated a time-dependent increase of anti-M1 antibodies. AP-MS analysis comparing the composition of the M1-plasma protein network from naïve and immunized mice showed a significant enrichment of 292 IgG peptides associated with 56 IgG chains in the immune mice. Despite the significant increase of bound IgGs, the levels of interacting plasma proteins were not significantly reduced in the immune mice. The results indicate that the antigen-specific polyclonal IgG against the M1 protein primarily targets epitopes outside the other plasma protein binding interfaces. In conclusion, this study demonstrates that AP-MS is a promising strategy to determine the relationship between antigen-specific antibodies and host-pathogen interaction networks that could be used to define subdominant protein regions of relevance for vaccine development.

13.
Front Vet Sci ; 11: 1384858, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38496315
14.
Bio Protoc ; 14(5): e4951, 2024 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-38464940

RESUMO

Intracellular bacterial pathogens have evolved to be adept at manipulating host cellular function for the benefit of the pathogen, often by means of secreted virulence factors that target host pathways for modulation. The lysosomal pathway is an essential cellular response pathway to intracellular pathogens and, as such, represents a common target for bacterial-mediated evasion. Here, we describe a method to quantitatively assess bacterial pathogen-mediated suppression of host cell trafficking to lysosomes, using Salmonella enterica serovar Typhimurium infection of epithelial cells as a model. This live-cell imaging assay involves the use of a BODIPY TR-X conjugate of BSA (DQ-Red BSA) that traffics to and fluoresces in functional lysosomes. This method can be adapted to study infection with a broad array of pathogens in diverse host cell types. It is capable of being applied to identify secreted virulence factors responsible for a phenotype of interest as well as domains within the bacterial protein that are important for mediating the phenotype. Collectively, these tools can provide invaluable insight into the mechanisms of pathogenesis of a diverse array of pathogenic bacteria, with the potential to uncover virulence factors that may be suitable targets for therapeutic intervention. Key features • Infection-based analysis of bacterial-mediated suppression of host trafficking to lysosomes, using Salmonella enterica serovar Typhimurium infection of human epithelial cells as a model. • Live microscopy-based analysis allows for the visualization of individually infected host cells and is amenable to phenotype quantification. • Assay can be adapted to a broad array of pathogens and diverse host cell types. • Assay can identify virulence factors mediating a phenotype and protein domains that mediate a phenotype.

15.
Front Immunol ; 15: 1350101, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38550576

RESUMO

Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.


Assuntos
Defeitos Congênitos da Glicosilação , Humanos , Criança , Glicosilação , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/tratamento farmacológico , Defeitos Congênitos da Glicosilação/patologia , Qualidade de Vida , Genótipo , Processamento de Proteína Pós-Traducional
16.
Front Immunol ; 15: 1359178, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38515745

RESUMO

Introduction: The heterogeneity of outcomes after Mycobacterium tuberculosis (Mtb) exposure is a conundrum associated with millennia of host-pathogen co-evolution. We hypothesized that human myeloid cells contain genetically encoded, Mtb-specific responses that regulate critical steps in tuberculosis (TB) pathogenesis. Methods: We mapped genome-wide expression quantitative trait loci (eQTLs) in Mtb-infected monocytes with RNAseq from 80 Ugandan household contacts of pulmonary TB cases to identify monocyte-specific, Mtb-dependent eQTLs and their association with cytokine expression and clinical resistance to tuberculin skin test (TST) and interferon-γ release assay (IGRA) conversion. Results: cis-eQTLs (n=1,567) were identified in Mtb-infected monocytes (FDR<0.01), including 29 eQTLs in 16 genes which were Mtb-dependent (significant for Mtb:genotype interaction [FDR<0.1], but not classified as eQTL in uninfected condition [FDR≥0.01]). A subset of eQTLs were associated with Mtb-induced cytokine expression (n=8) and/or clinical resistance to TST/IGRA conversion (n=1). Expression of BMP6, an Mtb-dependent eQTL gene, was associated with IFNB1 induction in Mtb-infected and DNA ligand-induced cells. Network and enrichment analyses identified fatty acid metabolism as a pathway associated with eQTL genes. Discussion: These findings suggest that monocyte genes contain Mtb-dependent eQTLs, including a subset associated with cytokine expression and/or clinical resistance to TST/IGRA conversion, providing insight into immunogenetic pathways regulating susceptibility to Mtb infection and TB pathogenesis.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Humanos , Mycobacterium tuberculosis/metabolismo , Monócitos/metabolismo , Locos de Características Quantitativas , Tuberculose/genética , Citocinas/metabolismo
17.
Int J Antimicrob Agents ; 63(5): 107138, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38490573

RESUMO

Intracellular human pathogens are the deadliest infectious diseases and are difficult to treat effectively due to their protection inside the host cell and the development of antimicrobial resistance (AMR). An emerging approach to combat these intracellular pathogens is host-directed therapies (HDT), which harness the innate immunity of host cells. HDT rely on small molecules to promote host protection mechanisms that ultimately lead to pathogen clearance. These therapies are hypothesized to: (1) possess indirect yet broad, cross-species antimicrobial activity, (2) effectively target drug-resistant pathogens, (3) carry a reduced susceptibility to the development of AMR and (4) have synergistic action with conventional antimicrobials. As the field of HDT expands, this systematic review was conducted to collect a compendium of HDT and their characteristics, such as the host mechanisms affected, the pathogen inhibited, the concentrations investigated and the magnitude of pathogen inhibition. The evidential support for the main four HDT hypotheses was assessed and concluded that HDT demonstrate robust cross-species activity, are active against AMR pathogens, clinical isolates and laboratory-adapted pathogens. However, limited information exists to support the notion that HDT are synergistic with canonical antimicrobials and are less predisposed to AMR development.

18.
Virulence ; 15(1): 2333367, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38515333

RESUMO

Our immune system possesses sophisticated mechanisms to cope with invading microorganisms, while pathogens evolve strategies to deal with threats imposed by host immunity. Human plasma protein α1-antitrypsin (AAT) exhibits pleiotropic immune-modulating properties by both preventing immunopathology and improving antimicrobial host defence. Genetic associations suggested a role for AAT in candidemia, the most frequent fungal blood stream infection in intensive care units, yet little is known about how AAT influences interactions between Candida albicans and the immune system. Here, we show that AAT differentially impacts fungal killing by innate phagocytes. We observed that AAT induces fungal transcriptional reprogramming, associated with cell wall remodelling and downregulation of filamentation repressors. At low concentrations, the cell-wall remodelling induced by AAT increased immunogenic ß-glucan exposure and consequently improved fungal clearance by monocytes. Contrastingly, higher AAT concentrations led to excessive C. albicans filamentation and thus promoted fungal immune escape from monocytes and macrophages. This underscores that fungal adaptations to the host protein AAT can differentially define the outcome of encounters with innate immune cells, either contributing to improved immune recognition or fungal immune escape.


Assuntos
Candida albicans , beta-Glucanas , Humanos , Candida albicans/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/microbiologia , Monócitos/microbiologia , beta-Glucanas/metabolismo
19.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474151

RESUMO

Extracellular vesicles (EVs) are lipid bilayers derived from cell membranes, released by both eukaryotic cells and bacteria into the extracellular environment. During production, EVs carry proteins, nucleic acids, and various compounds, which are then released. While Gram-positive bacteria were traditionally thought incapable of producing EVs due to their thick peptidoglycan cell walls, recent studies on membrane vesicles (MVs) in Gram-positive bacteria have revealed their significant role in bacterial physiology and disease progression. This review explores the current understanding of MVs in Gram-positive bacteria, including the characterization of their content and functions, as well as their interactions with host and bacterial cells. It offers a fresh perspective to enhance our comprehension of Gram-positive bacterial EVs.


Assuntos
Vesículas Extracelulares , Bactérias Gram-Positivas , Bactérias , Membranas , Membrana Celular , Bicamadas Lipídicas/metabolismo , Vesículas Extracelulares/metabolismo
20.
mSphere ; 9(2): e0059123, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38334404

RESUMO

Machine learning and artificial intelligence (AI) are becoming more common in infection biology laboratories around the world. Yet, as they gain traction in research, novel frontiers arise. Novel artificial intelligence algorithms are capable of addressing advanced tasks like image generation and question answering. However, similar algorithms can prove useful in addressing advanced questions in infection biology like prediction of host-pathogen interactions or inferring virus protein conformations. Addressing such tasks requires large annotated data sets, which are often scarce in biomedical research. In this review, I bring together several successful examples where such tasks were addressed. I underline the importance of formulating novel AI tasks in infection biology accompanied by freely available benchmark data sets to address these tasks. Furthermore, I discuss the current state of the field and potential future trends. I argue that one such trend involves AI tools becoming more versatile.


Assuntos
Inteligência Artificial , Pesquisa Biomédica , Algoritmos , Aprendizado de Máquina , Biologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...